bywave用不了了-雷霆加速免费永久

Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University

High-Throughput Biology Center, Institute of Basic Biological Sciences, Johns Hopkins School of Medicine

手机虚拟专用网络设置

We study the relationship between genotype, the DNA sequence that encodes life’s information, and phenotype, a living system’s observable properties. Applications are to human disease, primarily complex genetic disorders and cancer, and to designed synthetic systems. The Human Genome Project, which provided a reference sequence of the 3 billion DNA letters that are the instructions for human life, also identified heritable genetic variants that influence disease risk. Mutations that arise in individual cells similarly can lead to cancer and other diseases. We develop new computational methods and joint wet-lab approaches to define how inborn genetic variants and acquired mutations lead to disease, with the goal of developing new therapies.

Image: Organoids generated from human breast tumors are displayed in false color. These organoids are groups of 300-500 cells from fresh tissue that were grown in three-dimensional culture by our collaborators in the Ewald lab to generate phenotypes relevant to invasive breast cancer. We are developing methods that identify the genes that drive breast cancer invasion, dissemination, and metastatic outgrowth in the hopes of developing new therapeutic strategies for metastatic breast cancer and other cancers.

In Archive
佛跳墙v p n 破解版  v2节点电脑怎么样连接  快连VPN使用公开帐号  安卓vp n下载  v2ray怎么添加ssr节点  回锅肉加速器兑换码  飞机加速器官网